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Problem Statement
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Data demands are also increasing

/ Lower Latency: driven by applications \

* Online access: driven by machine-to-machine
interfaces (e.g., models)

* Volume: driven by advances 1in computing and
data mining

* A solution 1s to manage data according to their
“usefulness”.
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Data Management Today: black-box paradigm

/ Data are managed as largely opaque objects \

— albeit with labels (metadata) and “cover art” (browse)

Subscrip-
tions

Archive
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TN
Subscription: m Subsetting: \

“send data when my > = “give me just the
study area is clear” i clear pixels ™

Subscrip-

tions

Automatic 586 12 ‘2‘ = time-critical
quality assessment
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Usefulness is in the eye of the beholder
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A Characterization of MODIS Calibrated Radiance

/ Most popular product at Goddard DAAC \

* Train algorithm to classify pixels
— Cloud, glint, land, water, etc.

» Speed of the forward algorithm 1s critical.
— However, we can afford time and CPU for training.

* Products from science algorithms train machine
learning algorithms

— Products as proxy for domain experts

— Nearly unlimited supply of training and test data
— Circular logic 1f we were making science products...

— ...but 1n the decision support domain, 1t serves as a
high-speed approximator to the science algorithm.
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Bayesian Classification Applied to MODIS
Calibrated Radiance

/ Bayesian classification: \
— Pr(C|IE) =11 Pr(£, |C) x Pr(C) / II Pr(£))
— Where C 1s a class
— And E. are measurements of independent variables (evidence).
— Pr(C) 1s the prior probability
e Traming: Compute frequency histograms for £/|C

— MODIS cloudmask and ocean color products “train” the
classifier.
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Prior Probabilities

— Regional and Seasonal variations
— Derived from MODIS Level 3 gridded products
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Practical Classification - Application

/ For each class: \

— Look up the probability for each band measurement in frequency
histograms

— Compute product to get the overall probability for membership in that class
— Choose the class with the highest overall probability
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Bayesian Classification Example

Terra/MODIS scene for MODIS Cloudmask Product Bayesian classification using
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Timing Results
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\ *Bayesian classification on 250 MHz SGl, as a function of number of bands used/
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N@»ﬁ Exploitation of Classification Results

/ Add algorithm to Direct Broadcast processing stream\
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Content-Based Subsetting

D/eliverjust the pixels likely to be useful

e.g., cloud-free

1.  Classify using Bayesian classifier

2. Zero out pixels classified as cloud

3. Apply lossless compression

Currently implemented as an on-the-fly conversion in
WUSTL FTP, e.g.:

ftp g0dug03u.ecs.nasa.gov

>cd /datapool/OPS/user/MODB/RMT021KM.001

>ls

>cd 2004.06.13

>|s *.hdf

>get RMT021KM.A2004165.1843.001.2004166072602.hdf.clr
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Content-Based Data Selection

( Today: “select scenes
where cloud cover < 50%”

— Less than foolproof Ty

 Tomorrow: “select scenes
where Lake Winnebago 1s
visible”

* Ad hoc indexing / queries
are difficult, but...

e ...subscription queries
should be tractable
— “Is anyone looking for data

that are clear for a particular
area in this scene?”
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Automated Quality Assessment of Geolocation

/ Compare observed land-water pattern with land\
sea mask based on geolocation

— Systematic geolocation error = systematic shift in
pattern

* Technique:

— Classify land/water/cloud from geolocated radiance
— Assign +1.0 to land, -1.0 to water

» Assign “unknown’ classes a random number 1n the interval
(-1.0, +1.0)

— Cloud, snow/ice in classification

— Ephemeral water in land-sea mask

\ Compute cross-correlation using 2-D FFT /

6/30/04 16




Geolocation Case Study

/ Terra/MODIS data for 19 June 2002 reprocessed\
with the usual onboard attitude and ephemeris

* But: a spacecraft maneuver made the onboard
data inaccurate

— Typically, definitive attitude/ephemeris are used in
the vicinity of maneuvers

* Several months later...a group studying land
cover change 1dentified errors in geolocation
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Geolocation Shift Effect

Land-sea mask
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Bayesian classification
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