
PARAMESH : A Toolkit for Parallel Adaptive
Models
P. MacNeice

Drexel University
K. Olson

University of Maryland, Baltimore County
J. Merritt, M. Bhat and M. Rilee

L3 Communications Analytics Corp.

Abstract— We have developed a software package, called
PARAMESH, which offers developers of appropriate scien-
tific numerical models the ability to adaptively refine their
computational mesh. Written in Fortran 90, PARAMESH
supports models which use structured meshes. We describe
the PARAMESH package, and illustrate its use for a range
of scientific applications.

Keywords— AMR, Parallel Computing.

I. Introduction

MANY scientific modeling challenges today attempt
to simulate processes which span very large ranges

in spatial scale. For example, models of gravitational ra-
diation produced by interacting neutron stars must re-
solve the neutron stars (10km scales) and also reproduce
the asymptotic wave structure (at distances greater than
10000km from the neutron stars.)

These models compute the state of the system at a set
of discrete points which form a numerical mesh. The spac-
ing of these points establishes the spatial resolution of the
model. They have reached a point where the finest uni-
form meshes which can be run on the largest computers do
not provide sufficient resolution. Larger dynamic ranges
in spatial resolution are required, which must also be ca-
pable, and for this researchers are looking to adaptive
mesh refinement(AMR) techniques.

At the same time the largest computers are now highly
parallel distributed memory machines which provide a
challenging programming environment. Few genuinely
shared memory machines exist, and those which do, with
few exceptions, perform inefficiently unless the program-
mer takes aggressive control of decomposing their compu-
tational domain. The principal reason is that most shared
memory machines are actually distributed memory ma-
chines with globally addressable memory. Data locality is
often critical for good performance, because memory ac-
cess times are not uniform, and fetching data from more
remote memory can be relatively expensive.

Ideally it should not be necessary for the developers of
these models to have to become experts in AMR tech-
niques and parallel computing. It should be possible to

make these techniques available and competitive by pro-
viding an appropriate toolkit which can be used to extend
their existing codes.

In this paper we describe just such a portable com-
munity toolkit which we have been developing at NASA
Goddard Space Flight Center. Called PARAMESH, our
toolkit is designed to provide parallel support with adap-
tive mesh capability for a large class of models on dis-
tributed memory machines.

Our package of Fortran 90 subroutines, called
PARAMESH is designed to provide an application devel-
oper with an easy route to extend an existing serial code
which uses a logically cartesian structured mesh into a
parallel code with AMR.

Alternatively, in its simplest use, and with minimal ef-
fort, it can operate as a domain decomposition tool for
users who want to parallelize their serial codes, but who do
not wish to use adaptivity. The package can provide them
with an incremental evolutionary path for their code, con-
verting it first to uniformly refined parallel code, and then
later if they so desire, adding adaptivity.

The package is distributed as source code which will en-
able users to extend it to cover any unusual requirements.

In this paper we will briefly describe how PARAMESH
works, and illustrate the range of applications which have
been developed to use it. Reference [1] provides a more
complete description.

II. Basic Package Design and Application

The PARAMESH package builds a hierarchy of sub-
grids to cover the computational domain, with spatial
resolution varying to satisfy the demands of the appli-
cation. These sub-grid blocks form the nodes of a tree
data-structure (quad-tree in 2D or oct-tree in 3D).

All the grid blocks have an identical logical structure.
Thus, in 2D, if we begin, for example, with a 6 x 4 grid on
one block covering the entire domain, the first refinement
step would produce 4 child blocks, each with its own 6
x 4 mesh, but now with mesh spacing one-half that of
its parent. Any or all of these children can themselves be

refined, in the same manner. This process continues, until
the domain is covered with a quilt-like pattern of blocks
with the desired spatial resolution everywhere.

The grid blocks are assumed to be logically cartesian
(or structured). By this we mean that within a block the
grid cells can be indexed as though they were cartesian.
If a cell’s first dimension index is i, then it lies between
cells i-1 and i+1. The actual physical grid geometry can
be cartesian, cylindrical, spherical, polar(in 2D), or any
other metric which enables the physical grid to be mapped
to a cartesian grid. The metric coefficients which define
quantities such as cell volumes are assumed to be built
into the user’s algorithm.

Each grid block has a user prescribed number of guard
cell layers at each of its boundaries. These guard cells
are filled with data from the appropriate neighbor blocks,
or by evaluating user prescribed boundary conditions, if
the block boundary is part of a boundary to the compu-
tational domain.

The package supports 1D, 2D, 2.5D (such as is used
frequently in Magneto-Hydrodynamics applications where
a magnetic field pointing out of the 2-D plane is kept), and
3D models.

Requiring that all grid blocks have identical logical
structure, may, at first sight seem inflexible and therefore
inefficient. In terms of memory use this is certainly true,
although, even in extreme cases the associated memory
overhead is rarely more than about 30%. However this has
two significant advantages. The first and most important
is that the logical structure of the package is consider-
ably simplified, which is a major advantage in developing
robust parallel software. The second is that the data-
structures are defined at compile time which gives mod-
ern optimizing compilers a better opportunity to manage
cache use and extract superior performance.

A simple example is shown in Figure 1 in which a 6 x
4 grid is created on each block. The numbers assigned to
each block designate the block’s location in the quad-tree
below. The different shapes assigned to the nodes of the
tree indicate one possible distribution of the blocks during
a 4 processor calculation. The leaves of the tree are the
active sub-grid blocks.

For accuracy and for simplicity, we insist that during
the refinement process the refinement level is not allowed
to jump by more than 1 refinement level at any location
in the spatial domain.

The package manages the creation and removal of the
grid blocks, builds and maintains the tree-structure which
tracks the spatial relationships between blocks, distributes
the blocks amongst the available processors and handles
all inter-block and inter-processor communication. It can
distribute the blocks in ways which maximize block local-
ity and so minimize inter-processor communications. It
also keeps track of physical boundaries on which particu-

76
3

17

4 5

 1

11

12

14

13

15

16

1

4 5 6 7

2

8

9 10

 8 9 10

11 12

 14 15 16 17

13 2

3

Fig. 1. A simple 2D example of a grid block tree covering a rectan-
gular domain. The tree node shapes indicate how this tree might be
distributed on a 4 processor machine to balance the workload. The
heavy lines in the grid diagram indicate the boundaries of sub-grid
blocks, and the lighter lines indicate individual grid cells.

lar boundary conditions are to be enforced, ensuring that
child blocks inherit this information when appropriate.

The approach we have taken is to implement a simpli-
fied version of the AMR design of Berger and Oliger [2].

The philosophy we have adopted in constructing
PARAMESH, is to remove from the application developer
as much of the burden of inter-block and inter-processor
communication as we possibly can. Hopefully, the result
is that the application developer can focus on writing code
to advance their solution on one generic structured grid-
block which is not split across processors.

The parallel structure which PARAMESH assumes is
a SPMD (Single Program Multiple Data) approach. In
other words the same code executes on all the processors
being used, but the local data content modifies the pro-
gram flow on each processor. It is the message-passing
paradigm, but with the burden of message-passing re-
moved from the application developer by the package.

The programming task facing the user can be broken
down into a series of straightforward steps.
1. Edit a few lines in a header files provided with the
package which define the model’s spatial dimensionality,
the properties of a typical grid block, the storage limits
of the block-tree, and the number of data words required
in each grid cell for each of the packages data-structures.
The header file is extensively commented to make this
step easy.
2. Construct a main program. Most time-dependent fluid
models will be able to use an example provided as a tem-
plate for their main program. This can be easily modi-
fied to suit the user’s requirements. The sequence of calls
to the ‘upper level’ routines in the PARAMESH package
should not need to be altered. The user will need to cus-
tomize the construction of an initial grid, establish a valid

initial solution on this grid, set the number of timesteps
and limits on the allowed range of refinement, and add any
I/O required. Sample code for all these tasks is provided.
3. Provide a routine which advances the model solution
on all the grid blocks through a timestep (or iteration).
This step is much simpler than it appears. The routine
can be constructed by taking the equivalent code from the
user’s existing application which advances the solution on
a single grid, and inserting it inside a loop over the leaf
blocks on the local processor. Inside this loop, the solution
data for the current grid block must be copied from the
package’s data-structures into the equivalent local vari-
ables in the user’s code segment. Then the user’s code
segment executes to update the solution on that block. Fi-
nally, the solution is copied back from the user variables
to the package’s data-structures, before the loop moves
on to repeat the same sequence for the next leaf block.
If conservation constraints must be satisfied, a few extra
lines must be added inside this routine to capture fluxes
and/or cell edge data at block boundaries.
4. Provide a routine to compute the model’s timestep.
Again this can be straightforwardly constructed from the
existing template by inserting the appropriate code seg-
ment from the user’s existing application, in the manner
described in step 3. The existing timestep routine tem-
plate has all the control and inter-processor communica-
tions required to properly compute the global minimum
of the maximum timesteps calculated for each block, or
to enable longer timesteps on coarser blocks if the user
chooses that option.
5. Provide a routine to establish the initial state on the
initial grid. A template has been provided which can be
tailored to suit the user’s model.
6. Provide a routine to set data values in guard cells
at physical boundaries in order to implement the user’s
choices of boundary conditions. Once again a template
routine has been provided which can be very easily mod-
ified.
7. Provide a function to test a single block to determine
if any refinement or de-refinement is appropriate. This
function is called during the refinement testing operation.
Again, a template exists which can be modified by the
user.

Detailed ‘How To’ instruction and illustration is pro-
vided in the User’s manual which comes bundled with the
software distribution, in the form of an HTML document.

Templates and worked examples are provided with the
package for all of these tasks.

Our design philosophy while developing this package
has been to present the user with a clean well commented
Fortran 90 source code, sufficiently simple in structure
that the user would not be afraid to customize routines
for their own particular use. We also strove for efficiency
on cache-based multiprocessors.

We have designed a number of tutorials which enable
the user to familiarize themselves with the packages design
before they begin to modify their application to use it.

The package is portable, working with either the MPI
library or the Cray/SGI SHMEM library.

The package supports solution data located at grid cell
center, at the centers of grid cell faces, edges and at cell
corners.

facevarx(:,i,j,k,lb)

facevary(:,i,j,k,lb)

facevarz(:,i,j,k,lb)

unk(:,i,j,k,lb)

unk_n(:,i,j,k,lb)

unk_e_x(:,i,j,k,lb)
unk_e_z(:,i,j,k,lb)

unk_e_y(:,i,j,k,lb)

x

y

z

Fig. 2. Location of data with respect to mesh cell.

It includes some support for constraint equations, such
as conservation control and to ensure interpolation which
maintains divergence free properties.

We began development of PARAMESH five years ago,
and have recently released version 3.0.

III. What Kind of Middleware is this?

PARAMESH does not fit the conventional description
of a standard callable library. It must be open-source be-
cause there is no such thing as a standard scientific mod-
eling application. Our experience has shown that each
application developer wants to add their own feature(s)
which extends the package, perhaps even breaking other
features which they do not need. As a result it was es-
sential that the code be amenable to user modification.
This made the popular and highly abstract approach to
object-oriented design unappealing, because it produces
an unacceptably steep learning curve. We chose therefore
to code directly in Fortran 90, and to focus on routine
function rather than object properties.

IV. Selected Applications

PARAMESH has been distributed to more than one
hundred researchers worldwide. Their applications span
a wide range of scientific applications. Here we illustrate
three which stress the AMR in different ways,
• modeling of coronal mass ejections
• nuclear detonation fronts on the surface of neutron stars
• interaction of compact gravitational objects.

Fig. 3. Early stage in the development of flux rope in an idealized
coronal mass ejection.

A. Coronal Mass Ejections

The first example is a 2.5D MHD model of a theory
for the initiation of Solar coronal mass ejections(CMEs).
Coronal mass ejections are the most significant drivers of
Space Weather disturbances. The physical mechanisms
responsible for CME initiation are not yet known. In this
idealized simulation the initial magnetic field is a com-
bination of dipolar and octupolar fields. The inner flux
system about the Solar equator is sheared at the Solar
surface causing it to expand upward. Magnetic reconnec-
tion begins where it pushes into overlying flux, and the
mesh refines there to more accurately follow this process.
Figure 3 shows the fieldlines as this begins to occur. The
mesh block outlines are also shown.

The code used a Flux Corrected Transport algorithm[3],
with magnetic field values specified at cell face centers,
and requires that the magnetic field remain divergence
free. It used a spherical coordinate system, with mesh
cell spacing in the radial direction proportional to radius
for a given refinement level.

B. General Relativity

The LISA project to detect gravitational radiation will
need sophisticated numerical modeling support, both to
predict and decipher complex signals which they hope to
record. A group, under the direction of Dr. Joan Cen-
trella at GSFC has begun development of the numerical
models needed. These will need to resolve the interacting
compact objects, on scales of 1-10 km, but also include
the ‘wave region’, sufficiently far from the source that the
wavefronts have achieved the wave pattern which will be
detected near the Earth. This needs AMR [4]. In figure
4 they illustrate wave propagation in a test calculation
using the code which produced the first AMR solution of
wave propagation for the full Einstein equations.

Fig. 4. A gravitational wave evolving as a solution of the full
Einstein equations on a non-uniform grid. No significant wave noise
is generated at the refinement discontinuity.

C. Astrophysics

The final example is a hydrodynamic simulation of the
initial stages of a helium detonation propagating through
the accreted envelope of a neutron star. Thermonuclear
runaways on neutron stars are generally accepted to ex-
plain Type I X-ray bursts from neutron stars.

This simulation was developed by the FLASH Group at
the University of Chicago [5,6]. It explores the evolution
of a small 2 km wide section of the stellar surface near the
origin of the detonation. Figure 5 illustrates the density
distribution after 60 microseconds, as the detonation front
propagates from its origin near the lower left corner. In
the lower frame the outlines of the grid blocks are shown
for the corresponding time. Each block is 8 × 8 mesh
cells in size. The mesh included seven different refinement
levels.

Their code uses a Piece-wise Parabolic algorithm, and
their 2D computation was done in the (r, z) plane of a
cylindrical coordinate system.

Fig. 5. Map of log of density map after 60 microseconds of a
thermonuclear detonation in the accretion envelope of a neutron
star, and the mesh structure for the same time.

Acknowledgments

The authors would like to acknowledge the assistance of
Drs. D.S. Spicer, C.R. DeVore, the FLASH group at the
University of Chicago and Mike Zingale, and Dr. Dae-Il
Choi.

References

[1] MacNeice,P., Olson,K., Mobarry,C., deFainchtein,R. and
Packer,C., Computer Physics Communications, vol. 126, p.
330, 2000.

[2] Berger,M.J., and Oliger,J., J. Comp. Phys., vol. 53, p.484, 1984.
[3] DeVore, R., NRL Memorandum Rep., No. 6544, 1989.
[4] New,C.B., Choi,D., Centrella,J.M., MacNeice,P. Huq,M.F., and

Olson,K., Phys. Rev. D, vol. 62, p.84039, 2000.
[5] Fryxell, B. et al, Ap.J.Suppl., vol. 131, p.273, 2000.
[6] Zingale,M. et al, Ap.J.Suppl., vol. 133, p.195, 2001.

