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Abstract- In this paper, the authors use Spatial Interaction
Filters (SIF) to simulate human experts’ visual process in
tracking spatial interactive objects. The algorithm includes
spatial density based pixel clustering and object interaction
descriptions, such as Contact Area Index (CAI) and correlation
filter. The algorithm is designed to automatically track the
Harmful Algae Bloom (HAB) targets. In the case studies, SIF
performs well in tracking coherent objects. However, it appears
to be weak in tracking the object that breaks into pieces. A
comparison between the correlation filter and the particle filter
is also presented.

1.  INTRODUCTION

Tracking spatiotemporal dynamics of ocean objects, such as
harmful algae blooms or river plume, is essential to
oceanographic studies. The main functions include: 1)
monitoring the movement of an ocean object that has been
identified; 2) forecasting the movement of an identified ocean
object; 3) predicating conditions favorable for an object to
occur where the objects have not been observed. For
example, to track and predict an ocean object from a satellite
image database, we want to know “where the object goes?”
“What are the patterns of movement in the past years?”
“Where is the new target?” “In what condition a target would
occur?” “What would be the spread pattern if wind speed or
direction changed?” To answer those questions, monitoring
or tracking an ocean object is fundamental. In this paper, we
only focus on tracking Harmful Algae Blooms (HAB). We
believe that the same algorithms can be extended for tracking
other ocean objects as well.
   Remote sensing database, such as SeaWiFS, has been the
means for detecting and forecasting the spatiotemporal
dynamics of ocean objects. Stedinger and Haddad [32]
demonstrated the first use of satellite images for detecting
Karenia brevis blooms. Stumpf [33] indicated that the use of
chlorophyll anomalies can provide a means for monitoring
for harmful algal blooms. According to Stumpf’s study [18],
there is a correlation between chlorophyll and K. brevis cell
concentration. The relationship appears valid in the field
when K. brevis dominates phytoplankton species
composition, until the concentrations become extremely high.
Chlorophyll however is not a reliable indicator for Karenia,
high chlorophyll is common in many areas without Karenia,
hence the need for the chlorophyll anomaly technique
described in Tomlinson et al. [19] to improve detection and
monitoring of these blooms.  This method has the added

advantage of clearly showing changes in the chlorophyll field
over short time scales.
     Unfortunately, ocean object tracking has been done
manually, which is expensive and time consuming. For
example, to verify a HAB in satellite images normally costs
30 minutes per frame. We still lack general data mining
algorithms for automatically monitoring the movement of an
ocean object and forecasting the object movement. In
particular, there is no available tool to translate scientists’
visual knowledge or heuristics into computational languages.
In this paper, we intent to develop a computational algorithm
that simulate experts’ visual process for tracking HAB.

2. PROBLEM

The tracking problem in this study is a two dimensional target
detection and morphing process because, from satellite
imaging point of view, the ocean objects are visible only at
the surface. Given a set of satellite images that contains target
areas, where each pixel consists of pixels with coordinates [x,
y] and density ρ and noises or artifacts θ at time t, identify
target areas (HAB) with distinguishable contour outlines. The
number of target areas depends on the predefined level of
details.
     In this study, the HAB areas can be represented in binary
pixels. Tracking the binary pixel targets is not as simple as it
appears to be because of the pixel noises, missing data and
deformation. Regular tracking algorithms have not been
found working properly in this case. For example, Binary
Morphology is very vulnerable to the pixel neighborhood and
it ‘dilates’ the targets’ shape after a few binary morphological
operations. It does not work well when a target has very
coarse pixel neighborhood. Furthermore, the spatial density-
based clustering algorithms [31] can cluster n-targets in a
large database while suppressing pixel noises. However, it
does not include target shape information, which is often
valuable for determining whether an area is an HAB target or
not.
     Currently, oceanographic scientists are mainly using
visual (manual) method to track the HAB. The manual
process appears to be time-consuming, but it does warrant an
acceptable accuracy. One of the advantages of the visual
tracking process is that humans use multi-dimensional
information simultaneously, such as shape and spatial
density, multichannel data and historical data.  The
followings are samples of rules extracted from oceanography
scientists:
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• Size: If the anomaly is too small it is not a HAB.
• Shape: If it is a resuspension anomaly it is not a

HAB (unless a HAB was previously identified.) If
the anomaly extends a long distance along the coast
(with coast parallel shape) .

• Region: If a lump develops in the anomaly field,
then it is checked by field data for potential HAB.
Check "non-HAB" for chlorophyll lumpiness (areas
within the anomaly where the chlorophyll peaks).

To determine the size of an area is straightforward. However,
to recognize a shape such as resuspension anomaly, or a track
a target that drifts across regions is challenging because this
deals with spatial interaction between objects. In this paper,
we focus on how to represent those visual heuristics and
apply the algorithms to case studies of HAB monitoring.

2.  SPATIAL INTERACTION FILTERS

The multi-body interaction dynamics forms visual
distributions, shapes, or patterns. The challenge of the visual
data mining lies in how to represent a spatiotemporal
interaction in a computer. This is involved both cognitive and
computational representations. Cognition scientist Leyton
[35] developed his theory of shape process grammar that
addresses shape deformation dynamics. In his theory, the
interactive shapes are classified into extremum types with
corresponded process types. On the other side, computer
scientists developed clustering models such as spatial
density-based models [31] to characterize the pixel ‘texture’
of an object.
     In this paper, we present the Spatial Interaction Filters
(SIF) that is to integrate both approaches. The SIF contains
models for detecting the contact shape of two objects,
tracking correlations of a shape deformation over time, and
detecting targeted areas. The SIF contains following filters:
1) multilevel spatial density clustering, 2) spatial correlation
and, 3) contact area index. Fig.1 shows an illustration of the
SIF model.

Fig. 1 Spatial Interaction Filters
2.1 Multilevel Spatial Density-Based Clustering

To simplify the spatial object tracking, all the images are
converted in binary format. If the RGB value of a pixel
exceeds a certain threshold, the value of the corresponding
pixel in the resultant images will be 1, otherwise 0. In Fig.2,
within a cluster, there are two types of points, core points and
non-core points. Core points are those having at least Min of
points with the same characteristics within a distance of Dis.
This implies the central area of the cluster will have a
minimum density of Min / Dis. All the neighboring points
within a distance of Dis are classified as the same cluster.
Those neighborhoods are then examined to check if they are
core points. This process continues recursively. Noises are
neither core points nor the neighborhoods of other core
points.

Fig. 2. Spatial Density-Based Clustering

    Each pixel of the input image is analogue to a point in
database. Each pixel is examined at least once. The only input
parameters needed to be determined are Dis and Min. The
values for these 2 parameters are rather application-specific.
One can tune the values and they can be applied to all the
images. The density-based clustering preserves the shape and
does not merge those small disconnected blooms to the large
ones.
    We applied the same clustering algorithm by two passes
with two set of values of Dis and Mis. The first pass is to
remove the noises in the mates and the second one is to filter
off small and isolated objects and group the targeted objects
together.
    For the second pass, we aim at filtering off the small
objects which is isolated from the major ones. We chose 40
and 180 for Dis and Min which are large enough to capture
those isolated small objects. It is because isolated objects
should have much space surrounding it making its density
below the threshold. And now a cluster is composed of a
number of objects close to each other. It is more like human’s
eyes that treat a set of disconnected objects close together as
a group.
     For better visualizing and representing each cluster as a
shape, we applied a simplified snake algorithm to find the
contour of the cluster. We begin with drawing a minimum



bounding box as the initial contour for each cluster. The
coordinates of the box are collected while the clustering
algorithm is running. We then shrink the contour by moving
its pixel of the contour to the average position of its
neighbors. X.new and Y.new are the new X and Y
coordinates of this pixel.  X.left and X.right are the X
coordinates of the left pixel and right pixel along the line of
the snake. Y.left and Y.right are similar. α specifies the level
of movement of each pixel in each iteration. The quality
depends on the number of iterations you want to spend on
shrinking the snake. Figure 4 is an example of the output after
5000 iterations. The more iterations the better fit the shape of
the anomalies. The only tradeoff is computation time. But the
difference is not obvious. Figure 6 also shows the contoured
clusters.

Fig. 3. Active contour sample

2.1  Contact Area Index (CAI Number)

How to describe an object that is in parallel to the contact
edge of another object? This is a frequently asked question in
oceanography studies. For example, hurricanes cause a lot of
resuspension and coastal runoff related with wind and rain.
This introduces a lot of suspended solids into the water
column. This can be mistaken for newly synthesized
chlorophyll. There are two methods to subtract out this
resuspension from the chlorophyll anomaly. One way to
identify an anomaly is by location and shape. Scientists
discovered that if an anomaly extends a distance along the
coastline and rather thin in shape, it is likely to be a
resuspension event. In another word, resuspension anomalies
usually have a shape parallel to the coastline.

Fig. 4. Contact edge between the bloom and coastline

In an effort to quantifying this observation, Contact Area
Index (CAI) is created and is defined as a ratio between the
area of object a and the contact length between object a and
b. The smaller the CAI number, the more parallelism to the
contacted object is. Figure 4 is a visual representation of the
calculation of CAI number.

CAI = A  / Lab                                                                     (1)

     where, A is area of the object a, Lab is the length of
contacted edge between object a and b.

2.3 Correlation Filter

The matched filter is built by using Fast Fourier Transform
and Correlation Theorem:

(2)

Where, a is the test image while b is the reference object in
the previous image to be tracked. X = FFT(x) and x =
IFFT(X) represent Discrete Fast Fourier Transform and
Inverse Discrete Fast Fourier Transform respectively.

(3)
W

(4)

where

N denotes the length of the vector and symbol .* denotes
array multiplication and conj returns the complex conjugate



of the argument. The pixel that gives the highest correlation
value has the highest confidence that the reference object is at
that pixel location.

3.  MONITORING HARMFUL ALGAE BLOOMS

Automatic ocean object tracking requires quantitative
analyses of numerous images, specifically, identification of
individual blooms. An ability to identify a bloom and then
produce an image that codes each bloom uniquely would be
quite useful. In the detection and tracking of harmful algae
bloom, the Spatial Interaction Filter is mapped into a more
application-specific filtering process. Figure 4 shows the
process for monitoring harmful algae bloom in an image.
Chlorophyll anomaly provides an effective means for
monitoring for harmful algae bloom. Stumpf’s result shows
that chlorophyll anomalies can successfully detect a harmful
algae bloom with an accuracy of at 80% in most regions of
the Gulf of Mexico. The potential zones are further refined by
emulating human’s visual analysis. A multi-level density
based clustering is applied to the imagery to filter off noises
and form clusters of blooms. Contact Area Index (CAI) is
used to identify a bloom which has a shape parallel to the
eastern coastline of Gulf of Mexico. Any bloom which
extends a long distance along the coastline is considered as
resuspension event and should be excluded from the analysis.
Some regions of the ocean have a very small probability that
there is a HAB even if there is a high concentration of
chlorophyll anomalies. A bloom developed in a non-HAB
region sailed to other part of the ocean is not classified as
HAB. Correlation filter is to identify and track the movement
of a particular bloom so that blooms developed in the non-
HAB region can be filtered.
    The pseudo code of the algorithm is as following:

Read the raw file of the satellite image
Generate a chlorophyll anomalies image from raw file
Convert the chlorophyll anomalies into binary image
Cluster the binary image to remove noises
Cluster the noise removed binary image to form anomalies groups
For each anomalies group in the current frame
   Compute the Contact Area Index
   If Contact Area Index < threshold
       Remove the group from the chlorophyll anomaly image
   End
End
For each anomalies group LastAnom in the last frame
   Generate a match filter
   Correlate on current frame
   Filter off small correlation value
   For each remaining pixel
       Check if it is the closest to LastAnom
   End
   Find the anomaly group CurrAnom that contains the closest pixel in the
current frame
   If LastAnom is from non-HAB region
       Mark CurrAnom as from non-HAB region
   End
End

Fig. 4 Block diagram showing the monitoring process

3.1 Data Recovery
HAB has a near linear correlation with the level of
Chlorophyll concentration. In practice, scientists use
Anomaly images and Chlorophyll images to determine where
are the blooms visually. In their experience, Anomaly weighs
about 80% and Chlorophyll weighs about 20%. Usually,
merely statistical methods do not work because of the noisy
data, such as clouds and interference. In this study, we start
with simulate expert’s visual information process with
Artificial Intelligence and Computer Vision algorithms, based
realistic data set. Then we move on to find out more suitable
mathematical expressions. To simplify the problem, we only
use Anomaly images to determine HAB areas, since this
approach has at least 80% accuracy.
    There are two types of raw data files derived from
SeaWiFS database: anomaly files and chlorophyll files. The
chlorophyll images contain all eleven channels from the
databse’s original satellite data product.  They are band
interleaved, with dimensions of 682x730 pixels. We use all 6
reflectances, the albedo, solar zenith angle and landmask in
order to throw out pixels which do not meet cloud mask
criteria.  For example, the land is identified when channel 11
= -1. Clouds are identified by the following: channel9 >
(2700 + channel6*0.084). Also, bad pixels are identified



when the solar zenith angle is greater than 60 degrees),
therefore, when channel10 > 600 (channel ten is equal to
satellite zenith angle multiplied by 10). For the anomaly files,
values of -32768 refer to bad pixels and clouds.

3.2 Spatial Density-Based Clustering
To simplify the study of HAB, all the chlorophyll anomalies
images are represented in binary format. If the RGB value of
a pixel exceeds a certain threshold, the value of the
corresponding pixel in the resultant images will be 1,
otherwise 0. When humans look at a picture or a set of data,
their brains will search for the most distinguishable features,
ignoring small and evenly distributed objects. During the
HAB analysis by oceanographic scientists, they tend to group
close but isolated potential anomalies together.
    Morphology is a straightforward method in achieving this
purpose. It requires the use of a structure element acting as a
paintbrush during dilation and erosion. The shapes of the
bloom areas are different from the original image depending
on the size and shape of the structure element. In order to
preserve any information we have, the shape in our case, we
treated our image as a small database and applied a density-
based database clustering algorithm by Ester, Kriegel, Sander
and Xu [31] to remove noise and group the pixels together to
emulate the human process.
     We start with spatial density clustering because it needs
minimal domain knowledge to determine the input
parameters and it works with arbitrary shapes.  Many existing
partitioning algorithms need users to input a parameter k to
divide the database into a set of k clusters. As the number of
HAB areas varies in each image, we want to have a clustering
algorithm that does not need k as input. Also, the shape of a
bloom is highly random. It is important to identify the bloom
no matter what shape it is.
     Within a cluster, there are two types of points, core points
and non-core points. Core points are those having at least Min
of points with the same characteristics within a distance of
Dis. This implies the central area of the cluster will have a
minimum density of Min / Dis. All the neighboring points
within a distance of Dis are classified as the same cluster.
Those neighborhoods are then examined to check if they are
core points. This process continues recursively. Noises are
neither core points nor the neighborhoods of other core
points.
      Each pixel of the input image is analogue to a point in
database. Each pixel is examined at least once. The only input
parameters needed to be determined are Dis and Min. The
values for these 2 parameters are rather application-specific.
One can tune the values and they can be applied to all the
images. Figure 6 and 7 show a comparison between binary
morphological processing and density-based clustering
algorithm. The density-based clustering preserves the shape
and does not merge those small disconnected blooms to the
large ones.
     From the satellite images, there are some small pixels
indicated as bloom in the middle of the ocean which is far

from the coastline. They are obviously not harmful algae
bloom. Moreover, scientists are only interested in algae
bloom at least of certain size. Therefore, we applied the same
clustering algorithm by two passes with two set of values of
Dis and Mis. The first pass is to remove the noises in the
mates and the second one is to filter off small and isolated
blooms and group the blooms together.
      For the first pass, Dis and Min are 6 and 40 respectively
which means a core pixel should have at least 40 other algae
bloom pixels within a circle of radius of 6 pixels. The values
are chosen in such a way that the circle drawn is just smaller
than the smallest bloom that may appear. All the real blooms
should have enough density to remain in the image. Each
bloom forms a cluster itself.
    For the second pass, we aim at filtering off the small
blooms which is isolated from the major ones. We chose 40
and 180 for Dis and Min which are large enough to capture
those isolated small blooms. It is because isolated blooms
should have much space surrounding it making its density
below the threshold. And now a cluster is composed of a
number of blooms close to each other. It is more like human’s
eyes that treat a set of disconnected objects close together as
a group. Figure 6 shows the result after the second pass.
Without the first pass, some noises which are close to those
large blooms will be captured.
     For better visualizing and representing each cluster as a
shape, we applied an active contour model to find the outline
of the cluster. We begin with drawing a minimum

Fig. 5. Noise filtered by the first pass of the clustering algorithm

bounding box as the initial contour for each cluster. The
coordinates of the box are collected while the clustering
algorithm is running. We then shrink the contour by moving
its pixel of the contour to the average position of its



neighbors. CAI numbers are then calculated between each
contoured cluster and the coastline of the Gulf of Mexico. If
any contoured cluster falls below the threshold, it is marked
as potential resuspension. Experiments show that
resuspension usually has a CAI number less than 70. Figure 6
shows the sample values of CAI number.

Fig. 6. Samples of Contact Area Index

3.3 Correlation Filtering

The chlorophyll anomalies may capture different kinds of
blooms and only some of them are harmful. A region of the
Gulf of Mexico is suggested that it is impossible to
distinguish harmful blooms from the anomalies due to the
optical complexity of the region. Historical data also shows
that harmful algae blooms are infrequent in this region.
Therefore, we assume that any anomaly developed in this
region is not HAB. However, non-HAB may move to other
regions of the coastline. It is necessary to track if an anomaly
in a HAB region is actually coming from a non-HAB region.
HAB recognition and tracking is done by correlation filter on
each image frame.
    The consecutive images may show a large difference
because the time elapsed between each image varies. The
shape of the bloom may change dramatically and there may
be more than one peak value. In this case, the peak that is
closer to the center of the reference object will be picked. If
there exists more than one cluster in the location of the
reference object, the reference object is considered as
breaking into pieces. The process continues by using the
newly identified anomaly as the reference object for the next

image frame. Figure 9 shows the tracking of a particular
anomaly.

4. RESULTS

We used the dataset of the east coastline of the Gulf of
Mexico from NOAA to test the HAB monitoring. After a
series of filters applied onto the image, Figure 7 and 8 show
the chlorophyll anomalies image before and after processing
respectively.  Figure 9 shows the sample output of the
tracking.
     To provide a benchmark for our tracking performance, we
compared our results with that of particle filters, which is an
inference technique for estimating unknown motion state
from a noisy collection observation over time. To be more
specific, it is to approximate the posterior distribution by a set
of weighted particles with respect to the adaptive model.
More details can be found in [35].
     Figure 10 shows a result from the particle filter. Table 1
shows the acceptable percentage of both SIF with correlation
filter and particle filter. The result is considered as an
acceptable if and only if the box is bounding the expected
target. SIF achieved 95% on tracking performance on this
dataset while particle filter yielded 50%.
    We have shown results using our Spatial Interaction Filter
approach for tracking the movement and deformation of
chlorophyll anomalies and compared it to the particle filter
with appearance adaptive model. By comparing Figure 9 and
10, first, we can see that SIF has a higher accuracy in
indicating the whole tracking object, i.e. the whole object is
highlighted. For particle filter, the box is loosely bounded and
some part of the target is outside of the box. The boxes in
Figure 9 are added manually for better illustration in black
and white images. Particle filter only outputs the boxes as
shown in Figure 10. Second, particle filter cannot continue
tracking correctly once the target has moved significantly. In
our experiment, there is a large variation between image 40
and 41. Particle filter lost its target and produced wrong result
for the rest of 39 images. In general, particle filter works well
if the image frames shows smooth changes but it is not
necessarily true in our application. In addition, SIF with
correlation filter has better tolerance to abrupt movement.
     We also tested some extreme cases, e.g. the bloom breaks
into two pieces. The experiment is repeated again by using
the same set of images but the target bloom is changed. This
bloom extends a longer distance along the coastline than the
previous one.  Starting from image 21, the bloom broke into 2
pieces. SIF with correlation filter continued tracking for the
smaller piece only but particle filter still captured both of
them. At the later stage of the tracking, SIF only track one of
the pieces. Figure 11 and 12 show the results for both
approaches. We believe we can add more rules to
accommodate the splitting in the near future. Moreover, after
using the density-based clustering, pixels are no longer
independent and we are able to highlight the whole
anomalies.



     Table 1. SIF with Correlation Filter versus Particle Filter
Method SIF with

Correlation
Filter

Particle
Filter

acceptable % for Case 1
(target totally located)

79/79 = 100% 40/79 =   50%

acceptable % for Case 2
(split to two pieces)

48/79 = 60% 79/79 = 100%

5. CONCLUSIONS

Spatial Interaction Filters (SIF) is aimed to simulate human
experts’ visual process in tracking spatial interactive objects.
The algorithm includes spatial density based pixel clustering,
and object interaction descriptions, such as Contact Area
Index (CAI) and correlation matching. The results show that
the model can remove the artifacts, determine the
resuspension by shape, and track the selected target area.
    In our test cases, we found SIF performs well in tracking a
HAB with tolerance to abrupt movement and SIF gives
accurate outline of the tracked areas. However, it appears to
be weak in tracking the shape that breaks into pieces. Our
future work includes the study of how to make a more robust
model for monitoring HAB in larger data sets.
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Fig. 7. Satellite image before processing

Fig. 8. Satellite image after processing



Fig. 9. Tracking of a bloom which has moved significantly sampled in an interval of 4 days using SIF

Fig. 10. Tracking of a bloom which has moved significantly sampled in an interval of 4 days using particle filter



Fig. 11. Tracking of a bloom which has split into 2 pieces sampled in an interval of 4 days using SIF

Fig. 12. Tracking of a bloom which has split into 2 pieces sampled in an interval of 4 days using particle filter
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