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AbstractWe are developing a new computing environment 

for geodetic image processing for InSAR sensors to enable 
scientists to reduce measurements directly from radar satellites 
and aircraft to new geophysical products without first requiring 
them to develop detailed expertise in radar processing. The 
environment can serve as the core of a centralized processing 
center to bring Level-0 raw radar data up to Level-3 data 
products, but is adaptable to alternative processing approaches 
for science users interested in new and different ways to exploit 
mission data. The NRC Decadal Survey-recommended DESDynI 
mission [1] will deliver data of unprecedented quantity and 
quality, making possible global-scale studies in climate research, 
natural hazards, and Earth's ecosystem. The InSAR Scientific 
Computing Environment, applied to a global data set such as 
from DESDynI, is expected to enable a new class of analyses that 
take greater advantage of the long time and large spatial scales of 
these new data, than current approaches [2]. 

We are implementing an accurate, extensible, and modular 
processing system and reworking the processing approach in 
order to i) enable multi-scene analysis by adding new algorithms, 
ii) permit user-reconfigurable operation and extensibility, and iii) 
capitalize on codes already developed by NASA and the science 
community. The framework incorporates modern programming 
methods, including rigorous componentization of processing 
codes, abstraction and generalization of data models, and a 
robust, intuitive user interface with graduated exposure to the 
levels of sophistication, allowing novices to apply it readily for 
common tasks and experienced users to mine data with great 
facility and flexibility. The framework is designed to easily allow 
user contributions, creating an open source community that will 
extend the framework into the indefinite future. 
 

I. INTRODUCTION 
 

The objectives of the InSAR Scientific Computing 
Environment are to develop an open-source, modular, 
extensible InSAR computing environment for the research 
community.  The environment is to incorporate state-of-the-
art, highly accurate algorithms to automate InSAR processing 
for non-experts and experts alike. To service the community 
and promote use and update of the code, the project will 
deliver documented algorithms, formats and interfaces.  The 
specific goal is to create a code suite that the InSAR 
community embraces and grows with.   

The approach our multi-institutional team has taken is 
relatively straightforward for a software development project, 

but perhaps more structured than a typical research code 
development.  We are approaching the development by 
applying modern software system engineering techniques and 
tools for configuration management and maintenance.  In this 
work we are first collecting community-based requirements 
for InSAR processing methods and generalized data models.  
We then use these requirements to define an object-oriented 
framework.  With the framework in place, we populate it with 
processing modules.  Along the way we create documentation 
of the framework, modules, and use cases. 
 

II. THE ISCE ARCHITECTURE 
 

Architectural Goals 

The ISCE architecture implements a computing 
environment that can process interferometric synthetic 
aperture radar (InSAR) data from all current spaceborne 
platforms as well as the planned DESDynI platform, and that 
is accurate, easy to use, flexible, and easily extensible by both 
experts and non-experts.  From these basic principles, we have 
derived the following key drivers of our architecture: 

1. Preserve the vast expertise and testing currently 
encoded in Legacy Software 

2. Make that Legacy Software more lean in terms of the 
number of auxiliary tasks it needs to do (such as self 
configuration and I/O configuration).   

3. Build modern object oriented structures around and 
behind the legacy code to manage that code and push 
rather than pull user configuration onto that code 
before executing that code 

4. Implement common functions and services such as 
I/O through APIs to allow their implementations to 
change and to allow for user configuration and 
selection of those functions at run time 

5. Build in polymorphism mechanisms to allow user 
selections to alter the implementations of major 
processing steps and common functions.  Also allows 
just-in-time insertion of alternative functions and 
major components 

At the core of the ISCE architecture are two legacy InSAR 
processing packages: ROI_PAC and STD_PROC. Both of 
these software packages are primarily written in Fortran, 
mostly using the Fortran77 version of the language with some 
of the transitional features leading up to Fortra90 such as 
structures and dynamic memory allocation.  Some of the 
programs are written in C.  Control scripts are written in Perl 
(ROI_PAC) or Python (STD_PROC). ROI_PAC was initially 
developed over a decade ago and has been used extensively by 
the science community to process InSAR data from several 
different international spaceborne radar platforms such as 
ERS, EnviSAT, JERS, ALOS, and TerraSAR-X.  STD_PROC 
is currently being developed at Stanford University and is 
based on advances in the processing algorithms that came 
from processors developed at Jet Propulsion Laboratory (JPL) 
for SRTM and UAVSAR [3,4].   



Although STD_PROC is new, we refer to it along with 
ROI_PAC as legacy code because they are both received as 
domain expert software whose functionality we wish to 
preserve and also because they are both built in a well-known 
style that is very effective at accomplishing the processing 
steps but not easy for non-experts to use and not very flexible 
or extensible for expert developers to work with.  The ISCE 
architecture seeks to inject some modern software principles 
that allow for easier use and greater flexibility and 
extensibility.   

 
Architectural Framework 

To accomplish these goals of ease of use and greater 
flexibility and extensibility, the ISCE architecture surrounds 
the code housed in the programs and scripts of the legacy 
software with a city of structures that deliver services to the 
legacy programs as well as to the user and developer.  The 
services delivered to the legacy code do not replace the major 
processing tasks of the legacy programs; rather, they replace 
interactions with the external world that the legacy programs 
handled using mostly primitive language features.  The 
structures that deliver the services to the legacy programs 
replace structures currently housed inside the legacy 
programs, which requires modifications to the legacy 
programs to remove those structures and to add new wiring or 
plumbing to receive those services from the external 
structures.  

It is as if the legacy program were a house that contained 
the power plant that converts coal into electricity for its own 
use.  Coal must be delivered to the house because that is what 
it requires to produce its own electricity but the appliances in 
the house only require the electricity at the outlets and it 
doesn't matter whether that electricity is produced externally 
or internally and whether it is produced from energy from 
burning coal or from nuclear or solar energy; the electricity is 
the same either way.   

In the same way the legacy programs require data from the 
external world delivered in a certain format but they are also 
required to pull that data from the external world, which 
requires them to know the formats and locations of that data in 
the external world.  This handling of interactions with the 
external world, such as obtaining user command parameters 
and data, requires the programs to know more about the 
external world than they need to know, or rather imposes a 
fixed model of the external world, which causes inflexibility 
and brittleness.   The only necessary part of this interaction is 
that the legacy program needs data at a certain point in its own 
internal format---it only requires an outlet at a certain point 
with electricity of the right voltage.  This is all that should be 
necessary from the given program's point of view.   

The responsibility for obtaining (or putting) the data from 
(to) the external world, including understanding data formats 
and conditioning data for delivery in the proper format at the 
proper point in the program, can be delegated to external 
structures in the forms of software libraries and objects and 
through given interfaces (the wires and pipes) to those 
structures.  Using modern object-oriented programming 

structures and patterns these services can be dynamically 
configured according to the conditions of the external world 
for the given processing run, while still being able to be 
attached to the same wiring and plumbing and still deliver data 
to the programs in the form they require and without affecting 
the real work of the programs in processing the data.   

The restructuring of one legacy program unit into several 
program units is illustrated in Figure 1.  It brings several 
possibilities for improvement of the overall software package. 
First, and most obvious, is that the design is more modular 
with a greater division of labor and responsibilities into 
separate specialized modules.  The module representing the 
modified legacy program now contains only code for 
processing the data and hence it is simpler and easier to 
maintain and does not need to be changed or even recompiled 
whenever external data formats change as they often do.  
Second, the external modules that handle the user interface 
and the pipes can be generalized and reused for all of the 
processing programs in the legacy software.  The legacy 
programs as received all contain very similar copies of the 
same tens to hundreds of lines of code to handle the tasks that 
are now handled by the external modules.  Third, the modules 
that have been externalized from the legacy programs, as well 
as the wrapper around each legacy program, can now be freed 
from the coding style and language of the legacy code and can 
become specialized and built using object-oriented design 
principles and design patterns to further enable ease of use, 
flexibility, and extensibility.   
 

 

 
 
Figure 1. Schematic representation of a legacy program 
for data flow.  (a) The flow in a legacy program before 
restructuring for ISCE.  (b) The modified flow after 
restructuring for ISCE 
 



A key step in restructuring the software is to componentize 
the legacy programs. To componentize a legacy program is to 
embed it in a software wrapper that satisfies the properties that 
a component is expected to have.  There is no standard 
definition of these properties but we include among them a 
software entity that: (1) has independent integrity in the sense 
that it is not dependent on any particular implementation of 
other components with which it might interact; (2) has the 
ability to interact with other components in an interchangeable 
fashion; (3) defines “contractual” interfaces for control 
parameters, inputs and outputs which might include 
parameters, objects, and data streams; (4) contains proper 
initialization and finalization methods; and (5) provides 
introspection capabilities for its public methods and attributes.   

Figure 2 shows the architecture of a component that has an 
embedded legacy core.  A legacy core is not required for this 
to qualify as a component; ISCE includes components that do 
not contain a legacy core, but they do include the properties of 
a component and include other methods or class functions that 
contain the main function of the component.  The figure shows 
framework components and properties upon which the 
component is built either through class inheritance or 
composition.  The difference between class inheritance and 
composition is that the component that inherits properties and 
methods from a framework class is an object of the type of the 
inherited class with additional properties and methods built on 
top of it, whereas the component that acquires properties and 
methods by composition from a framework class has those 
properties and classes encapsulated in an object that it contains 
of the type defined by the framework class.  

Figure 2 shows flow of configuration and control 
parameters from the top into the component initialization 
method.  Those configuration and control parameters flow 
down to the component from a controlling or driving 
application, which is a special type of component.  The 
configuration and control parameters are derived from user 
inputs, either from the command line or from input files, and 
defaults defined in preferences files and possibly also defined 
within the application itself.  The component itself may also 
define defaults for parameters.  Defaults can always be 
overridden by user inputs. 

 
Runtime Polymorphism 

A key feature of ISCE that is meant to satisfy the 
requirements for flexibility and extensibility is built-in runtime 
polymorphism, a software mechanism to alter the behavior of 
the software at runtime through user inputs, without requiring 
the software to be recompiled. Through object-oriented 
principles, interfaces and tasks can be defined in the software 
components and applications, while deferring the instantiation 
of the concrete software objects that implement the tasks and 
adhere to the interfaces until run-time, when user inputs can 
be used in deciding which objects are appropriate or preferred 
for the given task for a particular processing run.  
Furthermore, when done carefully, it is not even necessary for 
all of the concrete software objects to exist at the time that the 
interfaces and tasks are defined in the computing environment.   

An ISCE developer or a user will be able to add software 
objects to the framework at any time after the framework is 
built.  User inputs or default settings can select the built-in or 
contributed objects at any time as long as the objects adhere to 
the interfaces.  

We are allowing for two types of polymorphism: (1) what 
we refer to as facility polymorphism where major components 
may be morphed at run-time; and (2) a plug-in type of 
polymorphism where lower level, common functions such as 
implementations of fast Fourier transforms (FFTs) may be 
selected across the board at run-time. Facilities define a task 
and an interface that are implemented by a component.  
Registering a Component as a Facility indicates the 
Component as the default Component to implement the 
Facility but also alerts the Application to allow the User to 
specify an alternate Component for that Facility at runtime. 

 
Provenance 

One advantage of the modularity and object orientation of 
ISCE is that we can develop objects with the dedicated task of 
tracing and logging the provenance of every data file produced 
by ISCE. Provenance is the ability to log and query the 
pedigree of a particular piece of processed data, which is an 
important element of scientific repeatability for the 
community.  Provenance allows users to keep track of the 
versions of applications, components, and other software that 
were used to produce a data product, the configuration 
parameters used to initialize those applications and 
components, as well as the provenance of the input data and 
other output data products.  Provenance will allow an 
investigator to explore data processing strategies, using 
different versions of the software or perhaps iteratively 
tweaking parameters while keeping a record of what was tried 
at every point.  This fosters reproducibility of results and 
allows users to create a record of what was done to the data 

 
Figure 2. Architecture of a component 



that can be shared with the community in the form of 
publications or scripts, which is an important aspect of 
scientific discovery and refinement.  ISCE supports 
provenance through database management and logging of 
processing steps and meta-data along each step of the 
processing chain.  Given the Python-based object-oriented 
methods in ISCE, the code lends itself to being used within 
software packages with higher levels of sophistication that 
provide provenance capability as well.  For example, several 
GUI interfaces, such as VizTrails, have complete provenance 
management, and easily accept Python applications and plug-
ins as GUI-based modules.  This effectively extends the ISCE 
utility as a scientific tool with very little effort. 

 
III. DESCRIPTION OF THE ISCE SOFTWARE 

 

To this point, we have been discussing the architecture in 
abstract terms, but now we turn to describing the software in 
more detail.  In Figure 2, everything except the Component 
Core is programmed in Python, and the Component Core 
consists of the native language legacy code, which may be 
Fortran or C.  To interact with the Python elements, we use the 
standard Python application programmer’s interface (API) for 
binding C to Python, with an intermediate layer to bind 
Fortran to C when the legacy code is Fortran.  

A more concrete picture of what the user sees in the ISCE 
distribution is shown in Figure 3. The user downloads ISCE 
from the JPL SVN server into a source directory.  SVN is the 
acronym for Subversion, which is an open source Version 
Control System (VCS) that is meant to be an improved version 
to the familiar CVS system, with many of the same 
commands. After downloading ISCE, the user can view the 
source code, run a simple SVN command to update a copy of 
the source code anytime that it changes in the JPL SVN 

server, and build and install the software for local use.  
To build the software, the user runs SCons, a Python based 

build system that works well in building code written in 
multiple languages.  SCons uses SConstruct files, supplied in 
each directory, that tell SCons to build and install the software 
in directories specified by the user through a user-specified 
global configuration file. The user is then ready to process 
radar data downloaded from data servers such as those 
maintained by the agencies that manage the radar platforms.  
Certain users will be given privileges to use SVN to contribute 
new software and to fix any bugs that might be found in the 
ISCE software so that the ISCE can continually be improved 
and enhanced by the user community.   

Figure 3 shows the structure of the source directory that is 
downloaded. The mainline ISCE applications and components 
are contained under the Applications and Packages directories, 
where Packages are collections of logically related 
Components, Legacy Cores, and other support software.  The 
Packages are iscesys, which contains the ISCE system or 
framework components and properties as well as several APIs; 
isceobj, which contains class definitions for several objects 
used by the components; mroipac, which contains the 
ROI_PAC recasting into components; and stdproc, which 
contains the STD_PROC recasting into components.  Figure 3 
shows a branch called Contrib, which points to a separate 
directory where the user’s software, or the contributed 
software, is housed. 

A component by itself does not actually do anything.  It 
must be instantiated in another type of component called an 
application that has the responsibility of collecting the user 
inputs and of managing its components from their 
initialization to the flow of data through them to their 
finalization.  Figure 4 shows the architecture of an application. 

 
 

 
 

Figure 3.  The structure of the ISCE source directory. 
 



IV. DESCRIPTION OF THE API SOFTWARE 
 

In this first year of development, we have recast 
approximately half of the ROI_PAC modules into cores of 
Python Components as described in the previous section.  We 
have also created the framework elements that support the 
ISCE architecture.  In particular, we have coded, documented, 
and tested the key framework APIs that allow us to control 
processing flow among ISCE modules.  These are the Image, 
Control, and StdOE APIs.  We now describe these software 
elements. 
 
Image API 

The image API provides a set of library functions that 
provide the legacy software and new programs developed by 
users with a reliable and versatile way of performing input and 
output operations on images. The image API consists of a set 
of C++ classes that contain an abstraction of a real world 
image, concrete methods to access data from sources (such as, 
but not limited to, files on disc), and a memory buffer to hold 
a given portion of an image that can be passed between the 
C++ and Fortran programs.  The C++ classes allow for very 
general and flexible configuration of the objects instantiated 
from them without specific regard for the types of images and 

memory buffer specifications currently in the Fortran 
programs of ROI_PAC and STD_PROC. 

We have developed the Image API with a number of 
features to meet our goals of extensibility and flexibility.  One 
of the key features ensuring extensibility is the use of an 
object-oriented language:  In the future versions of this 
software, the concrete sources of data may evolve to new 
types not anticipated at this time. Through object-oriented 
class inheritance mechanisms, new data accessor methods can 
be layered on top of those currently available without 
requiring us to rewrite code that currently works.   

We have built-in flexibility by providing a variety of 
methods for accessing data from the sources such as sequential 
access to full lines of data, random access by line number, as 
well as single pixel access.  The legacy code specifies which 
way it needs to access the data and uses library functions that 
call the appropriate class methods that have been configured 
when they were created to conform to the properties of the 
abstract image (such as its width and height) and the data 
sources.  

We have also allowed for flexibility in the number of 
supported band interleaving schemes. Radar images in the 
legacy code most often consist of complex numerical values at 
each pixel organized in range lines and cross-range position.  

 

 
 
 

Figure 4.  Application architecture.  The blue people indicate points where the user selects input parameters through input 
files and the command line as well as the components that are instantiated for a particular run. 

 



The legacy code’s in-memory representation of the data often 
treats the pixels as a single band of complex numbers but 
sometimes represents the pixels as two bands of real numbers 
(either magnitude and phase or real and imaginary) and uses 
different band interleaving schemes, such as interleaving by 
pixel, interleaving by line, or band sequential interleaving.  
Future code may be written with unanticipated concepts of 
bands and we have written the Image API to be very general 
without regard to what is currently found in the legacy code.  
The Image API allows users to control the conversion from 
one representation to another on input and output in an 
efficient manner to allow maximum user flexibility. 

The Image API allows machine dependent internal 
representations of the numerical values to be converted on the 
fly so that data files created on one machine can be used in our 
software without first creating a new file conforming to the 
internal representation of binary data on the machine that is 
running the ISCE software.  One particular internal 
representation issue, for example, that often causes difficulties 
is the endianness, or the ordering of bytes representing a 
numerical value from least significant to most significant byte 
or the opposite.  

The Image API exploits I/O caching, improving efficiency 
and speed.  The legacy code usually operates on one range line 
of data at a time in a sequential fashion, which is not 
necessarily the most efficient method of accessing data from a 
file. Cached I/O allows the data accessor to be optimized to 
load larger amounts of data at a time and feed the data to the 
legacy code in the chunks that it requires.  The data accessor is 
responsible for determining when file I/O operations are 
performed without the legacy code being involved in that 
process.  While modern disk controllers often perform their 
own caching to minimize disk usage, they don’t know how 
image data are typically addressed and utilized.  The Image 
API implements caching locally around a selectable collection 
of image lines (order of 100 lines), such that local operations 
can occur without reliance on the controller cache.  We have 
found this to greatly improve our throughput for certain image 
manipulations. 

 
Control API 

The Control API consists of a set of classes, features and 
methodologies that the ISCE framework utilizes to guarantee 
an easy, correct, reproducible, extensible and reconfigurable 
way of passing data among the different computing modules.  

Generally speaking, modules contain parameters or 
attributes that need to be set appropriately before they can 
perform their function properly. The control API provides 
methods for setting and examining these attributes through set 
and get methods. 

All ISCE modules inherit from a ComponentInit base class. 
This class, as the name suggests, allows the initialization of 
the parameters of the subclass that inherits it by passing an 
initializer object to it. The ISCE framework provides a set of 
default initializers that permit initialization from file, from a 
dictionary (an object consisting of a set of (key,value) pairs) or 
from another object. Expert users could provide their own 

initializers, as long as they conform to the architecture 
specifications.  

The ComponentInit class provides a set of convenience 
methods to allow the user to explore how to use a component, 
to debug his usage of the component, and to document the 
state of the control parameters through the following built-in 
capabilities: (1) determine which variables in the module must 
be set by the controlling program (i.e., those parameters that 
have no valid default value); (2) determine which variables 
have default values and what those default values are so that 
the user may have the option to override the default values; 
and (3) render the state of the component to a configurable 
destination such as to a file or to standard output (i.e., dump 
the variables and associated documentation  of an object to a 
specified destination that may be used and stored by the user 
to debug a component or to document the provenance 
information on the component’s state).   

Another component of the Control API is the Checkpoint 
class, which provides a check-pointing capability to the ISCE 
framework. In general the process of check-pointing allows 
the user to save the state of the system at a given point during 
the program flow, such that the program can be resumed at a 
given checkpoint without having to recompute the previous 
stages. This feature is important in the event that the process 
was interrupted.  

 
StdOE API 
An essential element of any program suite is the ability to 
print informative messages about the status of the processing 
(e.g. percent completion, derived parameters that may be of 
interest to the user, etc.) and any error messages that occur.  In 
conventional programming, particularly, in Fortran, coders 
insert write statements into their code that are sometimes 
compiler dependent, such that when compilers change, all the 
code needs to be updated.  To avoid such tight and brittle 
connection of logging messages to the code elements, we have 
created a logging API we call StdOE for “Standard Output and 
Error.” The StdOE consists of a C++ class used for 
reconfigurable standard output and error.  With this API, it is 
possible to choose destinations for standard output and 
standard error messages.  For example, the user might choose 
to select the terminal window for both of these output streams 
or might decide to send them to separate files, to a network 
socket, or to the input of some other process. 
 

CONCLUSION 
 

There will be a torrent of radar data available to the research 
community in the coming years as more and more spaceborne 
international radar systems are launched and the data become 
available for use, either in real time or from historical 
archives.  With the upcoming launch of the European 
Sentinel-1 spacecraft and the US DESDynI spacecraft alone, 
there will be a great deal of data that will be useful for repeat 
pass interferometric SAR processing.  Current tools are nearly 
all geared to examining individual frames or areas, and are not 
general enough or generalizable enough to allow researchers 



to explore the richness of the data in space and time.  The 
ISCE framework and radar processing software associated 
with it, described in this paper, are designed to be extensible 
and flexible enough to allow the researcher to ask questions 
and formulate new ways to answer them with relative ease in 
the environment. 
 The development to date has all the basic elements of 
the framework in place.  We are now refining these elements, 
creating data and metadata objects for specific data sources 
and problem sets, and completing the recasting of our 
algorithms into the framework.  We anticipate a documented 
and usable set of code in the coming year, with ample time for 
community feedback, bug fixes, and refinement during the life 
of the funded AIST development. And of course, we anticipate 
that the code will be useful enough, well enough documented, 
and accessible enough for the ISCE to far outlive the duration 
of the AIST program. 
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