
InSAR Scientific
Computing Environment

Eric Gurrola*, Gian Franco Sacco*, Paul A. Rosen*
Howard Zebker+

*Jet Propulsion Laboratory
4800 Oak Grove Dr

Pasadena, CA 91109 USA
+Stanford University

Mitchell Bldg.
Stanford University
Stanford, CA 94305

AbstractWe are developing a new computing environment

for geodetic image processing for InSAR sensors to enable
scientists to reduce measurements directly from radar satellites
and aircraft to new geophysical products without first requiring
them to develop detailed expertise in radar processing. The
environment can serve as the core of a centralized processing
center to bring Level-0 raw radar data up to Level-3 data
products, but is adaptable to alternative processing approaches
for science users interested in new and different ways to exploit
mission data. The NRC Decadal Survey-recommended DESDynI
mission [1] will deliver data of unprecedented quantity and
quality, making possible global-scale studies in climate research,
natural hazards, and Earth's ecosystem. The InSAR Scientific
Computing Environment, applied to a global data set such as
from DESDynI, is expected to enable a new class of analyses that
take greater advantage of the long time and large spatial scales of
these new data, than current approaches [2].

We are implementing an accurate, extensible, and modular
processing system and reworking the processing approach in
order to i) enable multi-scene analysis by adding new algorithms,
ii) permit user-reconfigurable operation and extensibility, and iii)
capitalize on codes already developed by NASA and the science
community. The framework incorporates modern programming
methods, including rigorous componentization of processing
codes, abstraction and generalization of data models, and a
robust, intuitive user interface with graduated exposure to the
levels of sophistication, allowing novices to apply it readily for
common tasks and experienced users to mine data with great
facility and flexibility. The framework is designed to easily allow
user contributions, creating an open source community that will
extend the framework into the indefinite future.

I. INTRODUCTION

The objectives of the InSAR Scientific Computing
Environment are to develop an open-source, modular,
extensible InSAR computing environment for the research
community. The environment is to incorporate state-of-the-
art, highly accurate algorithms to automate InSAR processing
for non-experts and experts alike. To service the community
and promote use and update of the code, the project will
deliver documented algorithms, formats and interfaces. The
specific goal is to create a code suite that the InSAR
community embraces and grows with.

The approach our multi-institutional team has taken is
relatively straightforward for a software development project,

but perhaps more structured than a typical research code
development. We are approaching the development by
applying modern software system engineering techniques and
tools for configuration management and maintenance. In this
work we are first collecting community-based requirements
for InSAR processing methods and generalized data models.
We then use these requirements to define an object-oriented
framework. With the framework in place, we populate it with
processing modules. Along the way we create documentation
of the framework, modules, and use cases.

II. THE ISCE ARCHITECTURE

Architectural Goals

The ISCE architecture implements a computing
environment that can process interferometric synthetic
aperture radar (InSAR) data from all current spaceborne
platforms as well as the planned DESDynI platform, and that
is accurate, easy to use, flexible, and easily extensible by both
experts and non-experts. From these basic principles, we have
derived the following key drivers of our architecture:

1. Preserve the vast expertise and testing currently
encoded in Legacy Software

2. Make that Legacy Software more lean in terms of the
number of auxiliary tasks it needs to do (such as self
configuration and I/O configuration).

3. Build modern object oriented structures around and
behind the legacy code to manage that code and push
rather than pull user configuration onto that code
before executing that code

4. Implement common functions and services such as
I/O through APIs to allow their implementations to
change and to allow for user configuration and
selection of those functions at run time

5. Build in polymorphism mechanisms to allow user
selections to alter the implementations of major
processing steps and common functions. Also allows
just-in-time insertion of alternative functions and
major components

At the core of the ISCE architecture are two legacy InSAR
processing packages: ROI_PAC and STD_PROC. Both of
these software packages are primarily written in Fortran,
mostly using the Fortran77 version of the language with some
of the transitional features leading up to Fortra90 such as
structures and dynamic memory allocation. Some of the
programs are written in C. Control scripts are written in Perl
(ROI_PAC) or Python (STD_PROC). ROI_PAC was initially
developed over a decade ago and has been used extensively by
the science community to process InSAR data from several
different international spaceborne radar platforms such as
ERS, EnviSAT, JERS, ALOS, and TerraSAR-X. STD_PROC
is currently being developed at Stanford University and is
based on advances in the processing algorithms that came
from processors developed at Jet Propulsion Laboratory (JPL)
for SRTM and UAVSAR [3,4].

Although STD_PROC is new, we refer to it along with
ROI_PAC as legacy code because they are both received as
domain expert software whose functionality we wish to
preserve and also because they are both built in a well-known
style that is very effective at accomplishing the processing
steps but not easy for non-experts to use and not very flexible
or extensible for expert developers to work with. The ISCE
architecture seeks to inject some modern software principles
that allow for easier use and greater flexibility and
extensibility.

Architectural Framework

To accomplish these goals of ease of use and greater
flexibility and extensibility, the ISCE architecture surrounds
the code housed in the programs and scripts of the legacy
software with a city of structures that deliver services to the
legacy programs as well as to the user and developer. The
services delivered to the legacy code do not replace the major
processing tasks of the legacy programs; rather, they replace
interactions with the external world that the legacy programs
handled using mostly primitive language features. The
structures that deliver the services to the legacy programs
replace structures currently housed inside the legacy
programs, which requires modifications to the legacy
programs to remove those structures and to add new wiring or
plumbing to receive those services from the external
structures.

It is as if the legacy program were a house that contained
the power plant that converts coal into electricity for its own
use. Coal must be delivered to the house because that is what
it requires to produce its own electricity but the appliances in
the house only require the electricity at the outlets and it
doesn't matter whether that electricity is produced externally
or internally and whether it is produced from energy from
burning coal or from nuclear or solar energy; the electricity is
the same either way.

In the same way the legacy programs require data from the
external world delivered in a certain format but they are also
required to pull that data from the external world, which
requires them to know the formats and locations of that data in
the external world. This handling of interactions with the
external world, such as obtaining user command parameters
and data, requires the programs to know more about the
external world than they need to know, or rather imposes a
fixed model of the external world, which causes inflexibility
and brittleness. The only necessary part of this interaction is
that the legacy program needs data at a certain point in its own
internal format---it only requires an outlet at a certain point
with electricity of the right voltage. This is all that should be
necessary from the given program's point of view.

The responsibility for obtaining (or putting) the data from
(to) the external world, including understanding data formats
and conditioning data for delivery in the proper format at the
proper point in the program, can be delegated to external
structures in the forms of software libraries and objects and
through given interfaces (the wires and pipes) to those
structures. Using modern object-oriented programming

structures and patterns these services can be dynamically
configured according to the conditions of the external world
for the given processing run, while still being able to be
attached to the same wiring and plumbing and still deliver data
to the programs in the form they require and without affecting
the real work of the programs in processing the data.

The restructuring of one legacy program unit into several
program units is illustrated in Figure 1. It brings several
possibilities for improvement of the overall software package.
First, and most obvious, is that the design is more modular
with a greater division of labor and responsibilities into
separate specialized modules. The module representing the
modified legacy program now contains only code for
processing the data and hence it is simpler and easier to
maintain and does not need to be changed or even recompiled
whenever external data formats change as they often do.
Second, the external modules that handle the user interface
and the pipes can be generalized and reused for all of the
processing programs in the legacy software. The legacy
programs as received all contain very similar copies of the
same tens to hundreds of lines of code to handle the tasks that
are now handled by the external modules. Third, the modules
that have been externalized from the legacy programs, as well
as the wrapper around each legacy program, can now be freed
from the coding style and language of the legacy code and can
become specialized and built using object-oriented design
principles and design patterns to further enable ease of use,
flexibility, and extensibility.

Figure 1. Schematic representation of a legacy program
for data flow. (a) The flow in a legacy program before
restructuring for ISCE. (b) The modified flow after
restructuring for ISCE

A key step in restructuring the software is to componentize
the legacy programs. To componentize a legacy program is to
embed it in a software wrapper that satisfies the properties that
a component is expected to have. There is no standard
definition of these properties but we include among them a
software entity that: (1) has independent integrity in the sense
that it is not dependent on any particular implementation of
other components with which it might interact; (2) has the
ability to interact with other components in an interchangeable
fashion; (3) defines “contractual” interfaces for control
parameters, inputs and outputs which might include
parameters, objects, and data streams; (4) contains proper
initialization and finalization methods; and (5) provides
introspection capabilities for its public methods and attributes.

Figure 2 shows the architecture of a component that has an
embedded legacy core. A legacy core is not required for this
to qualify as a component; ISCE includes components that do
not contain a legacy core, but they do include the properties of
a component and include other methods or class functions that
contain the main function of the component. The figure shows
framework components and properties upon which the
component is built either through class inheritance or
composition. The difference between class inheritance and
composition is that the component that inherits properties and
methods from a framework class is an object of the type of the
inherited class with additional properties and methods built on
top of it, whereas the component that acquires properties and
methods by composition from a framework class has those
properties and classes encapsulated in an object that it contains
of the type defined by the framework class.

Figure 2 shows flow of configuration and control
parameters from the top into the component initialization
method. Those configuration and control parameters flow
down to the component from a controlling or driving
application, which is a special type of component. The
configuration and control parameters are derived from user
inputs, either from the command line or from input files, and
defaults defined in preferences files and possibly also defined
within the application itself. The component itself may also
define defaults for parameters. Defaults can always be
overridden by user inputs.

Runtime Polymorphism

A key feature of ISCE that is meant to satisfy the
requirements for flexibility and extensibility is built-in runtime
polymorphism, a software mechanism to alter the behavior of
the software at runtime through user inputs, without requiring
the software to be recompiled. Through object-oriented
principles, interfaces and tasks can be defined in the software
components and applications, while deferring the instantiation
of the concrete software objects that implement the tasks and
adhere to the interfaces until run-time, when user inputs can
be used in deciding which objects are appropriate or preferred
for the given task for a particular processing run.
Furthermore, when done carefully, it is not even necessary for
all of the concrete software objects to exist at the time that the
interfaces and tasks are defined in the computing environment.

An ISCE developer or a user will be able to add software
objects to the framework at any time after the framework is
built. User inputs or default settings can select the built-in or
contributed objects at any time as long as the objects adhere to
the interfaces.

We are allowing for two types of polymorphism: (1) what
we refer to as facility polymorphism where major components
may be morphed at run-time; and (2) a plug-in type of
polymorphism where lower level, common functions such as
implementations of fast Fourier transforms (FFTs) may be
selected across the board at run-time. Facilities define a task
and an interface that are implemented by a component.
Registering a Component as a Facility indicates the
Component as the default Component to implement the
Facility but also alerts the Application to allow the User to
specify an alternate Component for that Facility at runtime.

Provenance

One advantage of the modularity and object orientation of
ISCE is that we can develop objects with the dedicated task of
tracing and logging the provenance of every data file produced
by ISCE. Provenance is the ability to log and query the
pedigree of a particular piece of processed data, which is an
important element of scientific repeatability for the
community. Provenance allows users to keep track of the
versions of applications, components, and other software that
were used to produce a data product, the configuration
parameters used to initialize those applications and
components, as well as the provenance of the input data and
other output data products. Provenance will allow an
investigator to explore data processing strategies, using
different versions of the software or perhaps iteratively
tweaking parameters while keeping a record of what was tried
at every point. This fosters reproducibility of results and
allows users to create a record of what was done to the data

Figure 2. Architecture of a component

that can be shared with the community in the form of
publications or scripts, which is an important aspect of
scientific discovery and refinement. ISCE supports
provenance through database management and logging of
processing steps and meta-data along each step of the
processing chain. Given the Python-based object-oriented
methods in ISCE, the code lends itself to being used within
software packages with higher levels of sophistication that
provide provenance capability as well. For example, several
GUI interfaces, such as VizTrails, have complete provenance
management, and easily accept Python applications and plug-
ins as GUI-based modules. This effectively extends the ISCE
utility as a scientific tool with very little effort.

III. DESCRIPTION OF THE ISCE SOFTWARE

To this point, we have been discussing the architecture in
abstract terms, but now we turn to describing the software in
more detail. In Figure 2, everything except the Component
Core is programmed in Python, and the Component Core
consists of the native language legacy code, which may be
Fortran or C. To interact with the Python elements, we use the
standard Python application programmer’s interface (API) for
binding C to Python, with an intermediate layer to bind
Fortran to C when the legacy code is Fortran.

A more concrete picture of what the user sees in the ISCE
distribution is shown in Figure 3. The user downloads ISCE
from the JPL SVN server into a source directory. SVN is the
acronym for Subversion, which is an open source Version
Control System (VCS) that is meant to be an improved version
to the familiar CVS system, with many of the same
commands. After downloading ISCE, the user can view the
source code, run a simple SVN command to update a copy of
the source code anytime that it changes in the JPL SVN

server, and build and install the software for local use.
To build the software, the user runs SCons, a Python based

build system that works well in building code written in
multiple languages. SCons uses SConstruct files, supplied in
each directory, that tell SCons to build and install the software
in directories specified by the user through a user-specified
global configuration file. The user is then ready to process
radar data downloaded from data servers such as those
maintained by the agencies that manage the radar platforms.
Certain users will be given privileges to use SVN to contribute
new software and to fix any bugs that might be found in the
ISCE software so that the ISCE can continually be improved
and enhanced by the user community.

Figure 3 shows the structure of the source directory that is
downloaded. The mainline ISCE applications and components
are contained under the Applications and Packages directories,
where Packages are collections of logically related
Components, Legacy Cores, and other support software. The
Packages are iscesys, which contains the ISCE system or
framework components and properties as well as several APIs;
isceobj, which contains class definitions for several objects
used by the components; mroipac, which contains the
ROI_PAC recasting into components; and stdproc, which
contains the STD_PROC recasting into components. Figure 3
shows a branch called Contrib, which points to a separate
directory where the user’s software, or the contributed
software, is housed.

A component by itself does not actually do anything. It
must be instantiated in another type of component called an
application that has the responsibility of collecting the user
inputs and of managing its components from their
initialization to the flow of data through them to their
finalization. Figure 4 shows the architecture of an application.

Figure 3. The structure of the ISCE source directory.

IV. DESCRIPTION OF THE API SOFTWARE

In this first year of development, we have recast
approximately half of the ROI_PAC modules into cores of
Python Components as described in the previous section. We
have also created the framework elements that support the
ISCE architecture. In particular, we have coded, documented,
and tested the key framework APIs that allow us to control
processing flow among ISCE modules. These are the Image,
Control, and StdOE APIs. We now describe these software
elements.

Image API

The image API provides a set of library functions that
provide the legacy software and new programs developed by
users with a reliable and versatile way of performing input and
output operations on images. The image API consists of a set
of C++ classes that contain an abstraction of a real world
image, concrete methods to access data from sources (such as,
but not limited to, files on disc), and a memory buffer to hold
a given portion of an image that can be passed between the
C++ and Fortran programs. The C++ classes allow for very
general and flexible configuration of the objects instantiated
from them without specific regard for the types of images and

memory buffer specifications currently in the Fortran
programs of ROI_PAC and STD_PROC.

We have developed the Image API with a number of
features to meet our goals of extensibility and flexibility. One
of the key features ensuring extensibility is the use of an
object-oriented language: In the future versions of this
software, the concrete sources of data may evolve to new
types not anticipated at this time. Through object-oriented
class inheritance mechanisms, new data accessor methods can
be layered on top of those currently available without
requiring us to rewrite code that currently works.

We have built-in flexibility by providing a variety of
methods for accessing data from the sources such as sequential
access to full lines of data, random access by line number, as
well as single pixel access. The legacy code specifies which
way it needs to access the data and uses library functions that
call the appropriate class methods that have been configured
when they were created to conform to the properties of the
abstract image (such as its width and height) and the data
sources.

We have also allowed for flexibility in the number of
supported band interleaving schemes. Radar images in the
legacy code most often consist of complex numerical values at
each pixel organized in range lines and cross-range position.

Figure 4. Application architecture. The blue people indicate points where the user selects input parameters through input
files and the command line as well as the components that are instantiated for a particular run.

The legacy code’s in-memory representation of the data often
treats the pixels as a single band of complex numbers but
sometimes represents the pixels as two bands of real numbers
(either magnitude and phase or real and imaginary) and uses
different band interleaving schemes, such as interleaving by
pixel, interleaving by line, or band sequential interleaving.
Future code may be written with unanticipated concepts of
bands and we have written the Image API to be very general
without regard to what is currently found in the legacy code.
The Image API allows users to control the conversion from
one representation to another on input and output in an
efficient manner to allow maximum user flexibility.

The Image API allows machine dependent internal
representations of the numerical values to be converted on the
fly so that data files created on one machine can be used in our
software without first creating a new file conforming to the
internal representation of binary data on the machine that is
running the ISCE software. One particular internal
representation issue, for example, that often causes difficulties
is the endianness, or the ordering of bytes representing a
numerical value from least significant to most significant byte
or the opposite.

The Image API exploits I/O caching, improving efficiency
and speed. The legacy code usually operates on one range line
of data at a time in a sequential fashion, which is not
necessarily the most efficient method of accessing data from a
file. Cached I/O allows the data accessor to be optimized to
load larger amounts of data at a time and feed the data to the
legacy code in the chunks that it requires. The data accessor is
responsible for determining when file I/O operations are
performed without the legacy code being involved in that
process. While modern disk controllers often perform their
own caching to minimize disk usage, they don’t know how
image data are typically addressed and utilized. The Image
API implements caching locally around a selectable collection
of image lines (order of 100 lines), such that local operations
can occur without reliance on the controller cache. We have
found this to greatly improve our throughput for certain image
manipulations.

Control API

The Control API consists of a set of classes, features and
methodologies that the ISCE framework utilizes to guarantee
an easy, correct, reproducible, extensible and reconfigurable
way of passing data among the different computing modules.

Generally speaking, modules contain parameters or
attributes that need to be set appropriately before they can
perform their function properly. The control API provides
methods for setting and examining these attributes through set
and get methods.

All ISCE modules inherit from a ComponentInit base class.
This class, as the name suggests, allows the initialization of
the parameters of the subclass that inherits it by passing an
initializer object to it. The ISCE framework provides a set of
default initializers that permit initialization from file, from a
dictionary (an object consisting of a set of (key,value) pairs) or
from another object. Expert users could provide their own

initializers, as long as they conform to the architecture
specifications.

The ComponentInit class provides a set of convenience
methods to allow the user to explore how to use a component,
to debug his usage of the component, and to document the
state of the control parameters through the following built-in
capabilities: (1) determine which variables in the module must
be set by the controlling program (i.e., those parameters that
have no valid default value); (2) determine which variables
have default values and what those default values are so that
the user may have the option to override the default values;
and (3) render the state of the component to a configurable
destination such as to a file or to standard output (i.e., dump
the variables and associated documentation of an object to a
specified destination that may be used and stored by the user
to debug a component or to document the provenance
information on the component’s state).

Another component of the Control API is the Checkpoint
class, which provides a check-pointing capability to the ISCE
framework. In general the process of check-pointing allows
the user to save the state of the system at a given point during
the program flow, such that the program can be resumed at a
given checkpoint without having to recompute the previous
stages. This feature is important in the event that the process
was interrupted.

StdOE API
An essential element of any program suite is the ability to
print informative messages about the status of the processing
(e.g. percent completion, derived parameters that may be of
interest to the user, etc.) and any error messages that occur. In
conventional programming, particularly, in Fortran, coders
insert write statements into their code that are sometimes
compiler dependent, such that when compilers change, all the
code needs to be updated. To avoid such tight and brittle
connection of logging messages to the code elements, we have
created a logging API we call StdOE for “Standard Output and
Error.” The StdOE consists of a C++ class used for
reconfigurable standard output and error. With this API, it is
possible to choose destinations for standard output and
standard error messages. For example, the user might choose
to select the terminal window for both of these output streams
or might decide to send them to separate files, to a network
socket, or to the input of some other process.

CONCLUSION

There will be a torrent of radar data available to the research
community in the coming years as more and more spaceborne
international radar systems are launched and the data become
available for use, either in real time or from historical
archives. With the upcoming launch of the European
Sentinel-1 spacecraft and the US DESDynI spacecraft alone,
there will be a great deal of data that will be useful for repeat
pass interferometric SAR processing. Current tools are nearly
all geared to examining individual frames or areas, and are not
general enough or generalizable enough to allow researchers

to explore the richness of the data in space and time. The
ISCE framework and radar processing software associated
with it, described in this paper, are designed to be extensible
and flexible enough to allow the researcher to ask questions
and formulate new ways to answer them with relative ease in
the environment.
 The development to date has all the basic elements of
the framework in place. We are now refining these elements,
creating data and metadata objects for specific data sources
and problem sets, and completing the recasting of our
algorithms into the framework. We anticipate a documented
and usable set of code in the coming year, with ample time for
community feedback, bug fixes, and refinement during the life
of the funded AIST development. And of course, we anticipate
that the code will be useful enough, well enough documented,
and accessible enough for the ISCE to far outlive the duration
of the AIST program.

ACKNOWLEDGMENT

We thank Piyush Shanker and Cody Wortham, both PhD
candidates at Stanford University, for their work on the
Permanent Scatterer and SBAS algorithm development and
validation as well as scripting work all contained in the
Stanford legacy code at the core of ISCE. The authors would
like to thank the Earth Science Technology Office at NASA
for support. This work was performed at the Jet Propulsion
Laboratory, California Institute of Technology under a
contract with NASA, and at Stanford University under a
contract with JPL.

REFERENCES

[1] Rosen, PA, A. Donnellan, Z. Liu, B. Hager, P. Lundgren,

F. Webb, S. Yun (2009). DESDynI’s Ability to Estimate
Source Parameters for Solid Earth Science Applications,
Proceedings of the IEEE 2009 International Geoscience
and Remote Sensing Symposium Conference, Capetown,
South Africa.

[2] Simons, M. and P. A. Rosen (2007). Interferometric
Synthetic Aperture Radar Geodesy, in Treatise on
Geophysics, G. Schubert Ed., Elsevier.

[3] Farr, TG, PA Rosen, E Caro, R Crippen, R Duren, S
Hensley, M Kobrick, M Paller, E Rodriguez, L Roth, D
Seal, S Shaffer, J Shimada, J Umland, M Werner, M
Oskin, D Burbank, D Alsdorf (2007). The Shuttle Radar
Topography Mission, Reviews of Geophysics, Vol. 45,
No. 2, RG2004.

[4] Hensley, S., K. Wheeler, G. Sadowy, C. Jones, S. Shaffer,
H. Zebker, T. Miller, B. Heavey, E. Chuang, R. Chao, K.
Vines, K. Nishimoto, J. Prater, B. Carrico, N.
Chamberlain, J. Shimada, M. Simard, B. Chapman, R.
Muellerschoen, C. Le, T. Michel, G. Hamilton, D.
Robison, G. Neumann, R. Meyer, P. Smith, J. Granger, P.
Rosen, D. Flower, R. Smith (2008). The UAVSAR
instrument: description and first results, 2008 IEEE Radar
Conference, 6 pp.

