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Abstract—In this work, the development and application of
optimization and uncertainty estimation tools within the NASA
Land Information System (LIS) is presented. These tools are
employed in the context of soil moisture simulation. The results
demonstrate the application of these tools for improved exploita-
tion of Earth science data relevant for hydrology.

I. INTRODUCTION

The NASA Land Information System (LIS [1], [2]) is
a high-resolution, high-performance, land surface modeling
and data assimilation system to support a wide range of
land surface research and applications. LIS integrates various
community land surface models, ground and satellite-based
observations, and ensemble-based data assimilation tools to
enable assessment and prediction of hydrologic conditions at
various spatial and temporal scales of interest. More recently,
the LIS infrastructure has been enhanced with the development
of a suite of inverse modeling tools (optimization and uncer-
tainty estimation subsystems) that help in the improved use of
Earth science data for hydrologic modeling. The optimization
infrastructure in LIS includes a suite of both deterministic
and stochastic algorithms and provides a new capability to
estimate and improve global soil or vegetation parameters from
satellite data. The uncertainty estimation algorithms, which
include Bayesian approaches such as Markov Chain Monte
Carlo (MCMC), acknowledge the uncertainty in modeling land
surface processes and use the observational information to
enable probabilistic predictions. These important capabilities
represent significant advancements over current practice and
further exploit the information content of the Earth science
data.

II. APPROACH

To demonstrate the new optimization infrastructure in
LIS, three optimization algorithms were implemented: (1)
Levenberg-Marquardt (LM), (2) Genetic Algorithm (GA) and
(3) Shuffled Complex Evolution from University of Arizona

(SCE-UA). The three algorithms represent a range of search
strategies suitable to different problem types. LM exploits local
information (numerically evaluated derivatives) to efficiently
identify the nearest local optimum in problems in which a
single local optimum exists. In contrast, GAs use a random
search strategy that helps avoid convergence to local, inferior
optima. SCE-UA combines local and random search strategies.

Two test cases involving the estimation of soil parameters
were formulated to demonstrate the implementation of the
algorithms and the optimization infrastructure. Test case I was
based on the prior work ([3]) that involved determining soil
properties given estimates of near surface soil moisture derived
from passive (L-band) microwave remote sensing over the
Walnut Gulch watershed in Southeastern Arizona. Errors in the
simulated versus observed soil moisture were minimized by
adjusting the soil texture, which in turn controls the hydraulic
properties through the use of pedotransfer functions (PTF).
To further test the algorithms, test case II was formulated by
modifying test case I to directly estimate the soil properties.
Test case II, therefore presents a more challenging optimiza-
tion problem, since it involves (a) the estimation of more
parameters compared to test case I, and (b) a decision space
solution characterized by a higher degree of freedom due to
the absence of the PTF constraints.

In addition to the optimization infrastructure, a comprehen-
sive uncertainty estimation subsystem was developed in LIS
that enables the estimation of uncertainties in parameters and
prediction. The design accommodates uncertainty estimation
methods based on Bayesian analysis. The aim of such algo-
rithms is to probabilistically infer the values of parameters
given an initial description of the parameter uncertainties
and given the observations and any associated modeling or
observational errors. A random walk MCMC algorithm was
implemented in the uncertainty estimation subsystem and was
applied for test case II. The MCMC algorithm, not unlike
the parameter estimation algorithms, involves exploration of
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Fig. 1. Comparison of soil moisture simulations at Lucky Hills. The control
represents the model simulation using the default parameters and LM, GA,
and SCE-UA represents the model simulations using the optimized parameters
which were estimated by these algorithms, respectively. The PBMR soil
moisture observations are also shown.

the parameter space. Unlike those algorithms, however, the
method by which new parameter values are proposed is
carefully constructed such that the points visited represent
a random sample from the probability distribution over the
parameter set and that are conditioned on the observations.

III. RESULTS

The soil moisture simulations are conducted over two sites
in the Walnut Gulch watershed: (1) Lucky Hills and (2)
Kendall. The Noah land surface model in LIS is employed
at 40m spatial resolution, forced with observed meteorology
at these locations. Figure 1 shows the results from test case
II, where the soil moisture simulations from using the default
model parameters (control) is compared against the estimates
generated by the model using the optimized parameters, using
the three optimization algorithms (LM, GA, SCE-UA). It
can be noticed that the optimized parameters improves the
ability of the model to match the simulated soil moisture
much more closely than when compared to the control that
relied on mappings of hydraulic parameters from soil texture
classifications.

Figure 2 illustrate the results from the use of MCMC
algorithm for testcase II. The learning of parameter values can
be inferred from examination of points visited by MCMC, as
shown in Figure 2. Prior to the soil moisture observations,
all combinations of parameter values within the scatterplot
boxes were considered equally likely. After the observations,
the probability coalesces around a localized region of the
parameter space, though considerable uncertainty remains.

In addition to providing information on model parameter
values, uncertainty estimation enables probabilistic estimates
and forecasts of model variables such as soil moisture. LIS
was run for each set of parameter values represented by the
sample points shown in Figure 2. Time series were generated
for soil moisture for each parameter set and at each timestep
the 5th and 95th percentile values were computed. The range
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Fig. 3. The uncertainty estimation capability yields multiple sets of parameter
values, and in turn, multiple sets of outputs from which confidence intervals
can be computed. Here the range between 5th and 95th percentiles is
plotted and envelopes the parameter estimation solution, including the GA
solution (dashed). Also probabilistic forecasts can be generated that reflect
the uncertainty. Above, a probabilistic forecast is given for the final timestep
in the model run. The spread in soil moisture is approximately 15% of the
dynamic range.

of soil moisture values between these percentiles is shown
in Figure 3. In addition, a probabilistic forecast of the soil
moisture is provided in the histogram inset in Figure 3.
For comparison, the time series of GA parameter estimation
solution (dashed line) is also shown.

Thus, these above experiments demonstrate the use of
optimization and uncertainty algorithms towards the increased
exploitation of the information content of remotely sensed
observations.
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Fig. 2. The “learning” of the model parameter values is apparent with the examination of the points (blue dots) visited by the MCMC algorithm, shown here
in 2D space for each pair of the four uncertain parameters. Initially all points within the boxes are equally likely. The points visited (after an initial “burn-in”
period) are a sample of the probability distribution conditioned on the observations. The move to a localized region within the parameter space shows how
the uncertainty, initially spread out over the entire space shown, narrows considerably. To contrast uncertainty estimation with the parameter estimation, the
GA solution (red dot) is also shown.


